
APPD 2016–2017 TD n◦ 8 — Master 1

Scheduling

1 Scheduling without communication costs

1.1 Preliminaries

Definition 1 (ρ-approximation). Let P be an optimisation problem with integer objective function fP .
Writing OPT (I) for an optimal solution of the problem P on instance I, we say a polynomial algorithm
A is a ρ-approximation for the problem P if and only if ∀I : fP(A(I)) 6 ρfP(OPT (I)).

Theorem 1 (Impossibility theorem). Let P be an optimisation problem with integer objective function
fP and c be a nonnegative integer. If the decision problem associated to P and value c (namely, “does
there exist x such that fP(x) 6 c ?”) is NP-complete, then, the existence of a ρ-approximation of P for
any ρ < (c+ 1)/c implies P=NP.

. Question 1 Prove the theorem.

Let us recall two classical NP-complete problems which we are going to use in the tutorial :

Definition 2 (2-Partition). Given a set I of n integers a1, . . . , an, find a partition of I = I1 t I2 such
that

∑
i∈I1

ai =
∑

i∈I2
ai.

Definition 3 (Clique). Given a graph G = (V,E) and an integer k, find a C ⊆ V of size k such that for
every u, v ∈ C, (u, v) ∈ E.

1.2 Independent tasks of various durations

If tasks are identical and independents, scheduling can obviously be done in polynomial time. However,
if durations of the tasks are allowed to be different, the problem becomes NP-hard. Yet there exists a
4/3-approximation for the scheduling problem, improving on the general result for generic list algorithms
(which are always 2-approximations).

Suppose p identical machines and n independent tasks (Ti)16i6n. We seek a schedule σ mapping to
each task Ti a machine µ(Ti) and a starting time τ(Ti), knowing that Ti takes time w(Ti) to be executed.
Ideally, this schedule should minimize D(σ) = max16i6n(τ(Ti) + w(Ti)).

. Question 2 Assuming Dopt < 3w(Ti) for every i, show that n 6 2p and give a polynomial-time
alogorithm to compute an optimal schedule.

. Question 3 Let us consider the following list algorithm : whenever a machine is free, we assign it the
longest task available. Call σ the induced schedule ; check the following bound

D(σ) 6 Dopt +

(
p− 1

p

)
d ,

where d designates the duration of a(ny) task ending at instant D(σ). Then, using the previous question,
deduce that :

Dopt 6 D(σ) 6

(
4

3
− 1

3p

)
Dopt .

1.3 Identical tasks with dependencies

Now we want to schedule n tasks (Ti)16i6n requiring one step of execution while respecting dependancy
constraints given by an order ≺ with p identical processors.

. Question 4 Show that deciding the existence of a schedule with makespan 3 is an NP-complete problem
(Hint : use clique).

. Question 5 What can you deduce on the existence of good approximation algorithms for this problem ?

O. Kaya , P.Pradic



APPD 2016–2017 TD n◦ 8 — Master 1

T1 T2 · · · · · · Ti · · · · · · Tn

T0

d1

w1

d2

w2

di

wi

dn

wn

Figure 1 – FORK graph with n children

2 Scheduling with communications

2.1 Scheduling of a FORK graph (with communications)

Definition 4 (FORK with n children). A FORK graph with n children is task graph possessing n + 1
vertices labelled by T0, T1, · · · , Tn, as depicted in figure ??. It has edges between the node T0 and each
of its children Ti, 1 6 i 6 n. Every node has a weight wi representing the execution time of the task Ti.
Each edge (T0, Ti) also has a weight di corresponding to communication costs. Communication costs are
incurred only if T0 and Ti are not run on the same processor.

We first assume that we have infinitely many processors which are multi-port (i.e., can send multiple
messages at once). Let us define the following optimization problem :

Definition 5 (FORK-SCHED-∞(G)). Given a FORK graph G with n children and infinitely many
processors, what is the scheduling σ minimizing the running time ?

. Question 6 Give a polynomial-time algorithm to solve FORK-SCHED-∞.

We tackle the same problem with a bounded number of processors :

Definition 6 (FORK-SCHED-BOUNDED(G,p)). Given a FORK graph G with n children and p pro-
cessors, what is the scheduling σ minimizing the running time ?

. Question 7 Show that the associated decision problem is NP-complete.

We come back to the problem with infinitely many identical processors, but we no longer suppose
them to be multi-port : a processor can only communicate with a single peer at a time.

Definition 7 (FORK-SCHED-1-PORT-∞(G)). Given a FORK graph G with n children and infinitely
many 1-port processors, what is the scheduling σ minimizing the running time ?

. Question 8 Show that the associated decision problem is NP-complete (Hint : one can use 2-Partition-
Eq, which is a variant of 2-Partition where both subsets are required to be of the same size).

O. Kaya , P.Pradic


