Parallel and Distributed Algorithms and Programs
TP n°4 - Parallel SUMMA Matrix-Matrix Multiplication

Oguz Kaya Pierre Pradic
oguz.kaya@ens-lyon.fr pierre.pradic@ens-lyon.fr

16/11/2016

Scalable Universal Matrix Multiplication Algorithm (SUMMA) is one of the most popular and intuitive methods
for parallel matrix-matrix multiplication. For simplicity, in this exercise, we will only be multiplying N x N matrices
A and B to obtain another N x N matrix C. We will use P = p X p processors, and assume again for simplicity that
p divides N. In SUMMA, the matrices A, B, and C are split into p X p submatrices. For instance, for p = 2, A is split
into submatrices A1, A12, A21, and Ags of size N/2 x N/2 each. In general, each process with index (i, ;) owns the
corresponding submatrices A;;, B;j;, and Cj;.

Algorithm 1 SUMMA matrix-matrix multiplication
Input: Matrices A, B, C of size N x N
P = p x p processors
Output: C' = AB is computed.
1: Distribute matrices so that the process p;; owns the matrices A4;;, B;;, and Cj;.
2: fork=1...pdo
3: Foralli=1...p, broadcast the matrix A;; as Aiemp to the process row p;i ... pip.
4: Foralli=1...p, broadcast the matrix By; as Biemp to the process column py; ... pp;-
5 At each process p;;, perform the local matrix multiplication update Ci; = Ci;j + AiempBiremp-

Note that in Algorithm ??, each matrix block of A is broadcasted to the corresponding processor row, whereas
each matrix block of B is broadcasted to the corresponding processor column. In order to perform these row-wise
and column-wise broadcasts, we need to create MPI communicators for each row and column of the processor grid.
Generating new communicators using MPI_Comm_split is very simple:

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

e comm is the communicator we want to split.

e color is an integer which determines in which subset of process we are. New communicator will include processes
sharing the same color.

e key is an integer used to determine the rank of a process in the new communicator. Two processes with the
same color will end up in the same communicator and there relative rank will be determined by this key.

e newcomm is a pointer to the new communicator being created.

Note that a communicator is still available after you split it. You may split MPI_COMM_WORLD however you want, it
will still be available for any operation (including splitting it differently to create yet another communicator).

Part 1
(Parallel SUMMA using splitted communicators

Question 1

a) As discussed, implementing Algorithm ?? requires forming a communicator for each row and column of the
processor grid. We can do this by splitting the default communicator MPI_COMM_WORLD properly. How can
this be done? What color and key values should we use? Figure this out and form the row and the column
communicators.

b) Instead of creating N x N matrices and distributing them, for simplicity, we will create the local submatrices of
each process using the provided function

TP n°4 - Parallel SUMMA Matrix-Matrix Multiplication 2016-2017

createMatrix(double **pmat, int nrows, int ncols, char *init).

Here, we provide a pointer to a double pointer (which will point to the created matrix), the number of rows
and the columns of the matrix to be created, and the method of initialization of matrix elements. Providing the
string "random" as init will initialize each matrix element randomly, whereas giving "zero" will initialize each
element to 0. At each process, create the local matrices Aloc, Bloc and Cloc of size (N/p) x (N/p). Make sure
to initialize Aloc and Bloc randomly, and Cloc with zeros.

We provide the function
multiplyMatrix(double *a, double *b, double *c, int m, int k, int n)

to perform the multiplication C' +— C' + AB where the matrices A, B, and C are pointed by a, b, and c, and the
matrices are of size m x k, kxn, and m xn, respectively. Using this function, and the row/column communicators
that you created, implement the SUMMA algorithm provided in Algorithm ?7.

Measure the performance of your implementation using SMPI for N = 1024 and P up to 64 (using a 8 x 8
processor grid). How well does your algorithm scale? Try to change the network bandwidth, and see when it
starts to lose scalability.

Make sure to backup all your implementations as they might be useful later on!

